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Abstract: Fragmentation has drastically altered the quality of habitats throughout numerous ecosystems, often leading to
dramatic changes in the composition of wildlife communities. The ecology and associated movement behavior of a species
may also be modified as a result of forest fragmentation, resulting in changes in genetic composition of the affected species.
In this research, we evaluated the genetic structure of the Virginia opossum (Didelphis virginiana Kerr, 1792) at the land-
scape and local scales in a fragmented, agricultural ecosystem in northern Indiana using 13 microsatellite loci. We examined
290 samples from opossums inhabiting 28 discrete habitat patches, and evaluated partitioning of genetic variation of opos-
sums among and within habitat patches. We observed low but significant levels of genetic structure (FST = 0.005) overall,
and pairwise comparisons of FST values among habitat patches also were relatively low. Relatedness within patches was
highly variable (–0.077 ≤ rxy ≤ 0.060), with a few patches exhibiting significantly higher levels of relatedness than random
expectations, and we detected no evidence of sex-biased natal dispersal. These results contrast with previous field studies
that documented male-biased dispersal in the Virginia opossum, indicating dispersal in this species is plastic and dependent
upon local environmental conditions.

Résumé : La fragmentation a fortement modifié la qualité des habitats dans un grand nombre d’écosystèmes, ce qui a sou-
vent causé des changements spectaculaires dans la composition des communautés de la faune sauvage. L’écologie et le com-
portement de déplacement associé d’une espèce peuvent aussi être changés à cause de la fragmentation des forêts, ce qui
entraîne une altération dans la composition génétique de l’espèce affectée. Notre étude évalue à l’analyse de 13 locus micro-
satellites la structure génétique des sarigues de Virginie (Didelphis virginiana Kerr, 1792) aux échelles du paysage et de la
localité dans un écosystème agricole fragmenté dans le nord de l’Indiana. Nous avons examiné 290 échantillons de sarigues
habitant 28 taches séparées d’habitat et mesuré la partition de la variation génétique des sarigues entre les taches d’habitat
et à l’intérieur de ces taches. Il existe des niveaux faibles, mais significatifs, de structure génétique (FST = 0,005) dans l’en-
semble; les comparaisons deux par deux des valeurs de FST dans les taches d’habitat sont aussi relativement faibles. Le de-
gré de parenté à l’intérieur des taches est très variable (–0,077 ≤ rxy ≤ 0,060), mais quelques taches affichent des degrés de
parenté significativement supérieurs à ce qu’on attend par chance; il n’y a pas d’indication de dispersion à la naissance parti-
culière selon le sexe. Ces résultats sont bien différents de ceux d’études de terrain antérieures qui décrivent une dispersion
qui favorise les sarigues de Virginie mâles, ce qui montre que la dispersion est variable chez cette espèce et dépend des
conditions locales de l’environnement.

[Traduit par la Rédaction]

Introduction

Fragmentation attributed to increasing row crop agriculture
in the central United States has produced ecosystems charac-
terized by numerous small, isolated forest patches exhibiting
a reduced capacity to support biological diversity (Ebinger
1997). Possible genetic consequences of habitat fragmenta-
tion to wildlife involve increased genetic drift owing to small
population sizes and reduced gene flow among habitat
patches. Indeed, the majority of studies that have examined
genetic diversity within fragmented ecosystems have reported

reduced genetic variation within remnant subpopulations (ge-
netic drift) and increased genetic variation among subpopula-
tions (see Keyghobadi 2007). However, relatively few such
studies have examined the genetic effects of fragmentation
on mesopredators (but see Dallas et al. 2002; Dharmarajan
et al. 2009; Sacks et al. 2010).
The Virginia opossum (Didelphis virginiana Kerr, 1792) is

the lone marsupial native to the United States and has gradu-
ally expanded its range northward since European settlement
(Gardner and Sunquist 2003). Several factors are likely con-
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tributing to the range expansion of this species, including its
adaptability to variable habitats (McManus 1974), the geo-
graphic expansion of anthropogenic resources (Kanda et al.
2006), and the extirpation of large carnivores in the central
United States (Crooks and Soulé 1999). Additionally, the
opossum is considered a generalist mesopredator that is capa-
ble of consuming nearly any food that is available, including
carrion, garbage, and earthworms (Whitaker and Mumford
2009). Consequently, it is often perceived as a species that
possesses a high tolerance for disturbance. In fact, there is
empirical evidence that opossums are tolerant of habitat frag-
mentation associated with human-dominated landscapes
(Crooks 2002; Gehring and Swihart 2003), although these
studies did not examine fine-scale population organization in
this species.
Resources in fragmented, agricultural ecosystems are both

spatially (Moore and Swihart 2005) and temporally variable
(Beasley et al. 2007), thus providing an environment that is
conducive to the development of local genetic structure at
fine spatial scales. For example, the raccoon (Procyon lotor
(L., 1758)), the primary competitor of the Virginia opossum,
exhibits significant levels of local genetic structure as a result
of the spatial aggregation of closely related individuals in an
agriculturally dominated area in Indiana (Dharmarajan et al.
2009). In contrast, movement behavior in Virginia opossums
has been documented to be nomadic (McManus 1974; Whi-
taker and Mumford 2009), but male-biased dispersal with fe-
male philopatry has also been observed (Fitch and Sandidge
1953; Holmes and Sanderson 1965; Wright 1989; Ryser
1995).
Population genetic tools are being increasingly employed

to elucidate ecological and behavioral patterns of wildlife
species (DeWoody et al. 2010). Although opossums have
been studied extensively both historically and recently using
traditional techniques, such as radiotelemetry and capture–
mark–recapture (Fitch and Sandidge 1953; Gipson and Kam-
ler 2001), population organization of the species has not been
thoroughly evaluated with the aid of molecular markers. In
genetic analyses, there is a continuum of possible outcomes
that may be observed given the range of movement behaviors
that could exist in the Virginia opossum. For example, noma-
dic movement behavior would produce no observable pat-
terns of local or landscape-level genetic structure, and our
study area would essentially constitute one panmictic popula-
tion. In contrast, local populations could be genetically dis-
tinct units owing to the spatial aggregation of related
individuals (Dharmarajan et al. 2009), producing a pattern of
local genetic structure with high levels of relatedness among
resident females and low levels of relatedness among resident
males within local populations.
In this study, we utilize a highly polymorphic panel of mi-

crosatellites (Fike et al. 2009) to elucidate patterns of land-
scape and local genetic structure in Virginia opossums
inhabiting a fragmented, agricultural ecosystem. To achieve
this goal, our objectives were (i) to quantify partitioning of
genetic variation within and among opossums inhabiting spa-
tially discrete habitat patches referred to as local populations;
(ii) to evaluate levels of social structure in local populations,

including relatedness among resident individuals; (iii) to
identify the presence of sex-biased dispersal among local
populations; and (iv) to evaluate landscape-level patterns of
genetic structure to reveal geographic barriers to dispersal.

Materials and methods

Study area
Our study area was located within the Upper Wabash River

Basin (UWB) in north-central Indiana and included
1165 km2 of primarily flat terrain within portions of Grant,
Huntington, Miami, and Wabash counties. The mean eleva-
tion was 243 m above sea level, and topography was typi-
cally restricted to areas adjacent to drainage networks
(Beasley et al. 2010). Agriculture accounted for 66% of the
land use within the study area, while 14% of the total area
was forested. Corn and soybeans dominated agricultural land
use within the UWB, while hay, wheat, and other grains were
rare. Forested areas were dominated by oak–hickory–maple
(Quercus L. – Carya Nutt. – Acer L.) communities and were
highly fragmented, with 72% of forest patches <5 ha and
<1% of patches >100 ha. Large contiguous forest tracts in
the UWB were restricted to areas unsuitable for cultivation
owing to frequent flooding or steep topography.

Sample collection and laboratory methods
Virginia opossums were trapped each spring (March–June)

over a 2-year period (2007–2008) in 28 forest patches distrib-
uted throughout the study area. Patch and local population
numbers follow Dharmarajan et al. (2009). The mean (±SE)
pairwise distance among sampled forest patches was 15.8 ±
1.6 km, with approximately 88% of pairwise distances ex-
ceeding 6 km (supplementary Table S1).1 Trapping methods
were described in detail in Beasley et al. (2011). Briefly,
Tomahawk live traps (Tomahawk Live Trap Co., Tomahawk,
Wisconsin, USA) baited with commercial cat food were
placed in a grid (50 m spacing) within each forest patch and
maintained for 10 consecutive nights. Captured opossums
were ear-tagged (Monel #3; National Band and Tag Com-
pany, Newport, Kentucky, USA), sexed, weighed, and a tis-
sue sample (ear punch) was taken for genetic analysis prior
to their release. Tissue samples were preserved in 100% etha-
nol and transferred to an ultra-low freezer for long-term stor-
age. At the time of sampling, young of the year were present
within the marsupium of parous females and were not travel-
ing independently. Thus, young of the year were excluded
from this research and all samples were breeding adults.
Trapping and handling methods conformed to Purdue Univer-
sity Animal Care and Use Committee policies under Protocol
01-079.
Genomic DNA was extracted from ear tissue using a modi-

fied ammonium acetate protocol (Latch et al. 2008). Thirteen
microsatellite loci were amplified via five multiplex polymer-
ase chain reactions (PCR) based on methods outlined in Fike
et al. (2009). Quality-control measures included two sets of
allelic standards, a positive control, and negative control for
each 96-well plate. Additionally, error rates for each locus

1Supplementary Tables S1 and S2 are available with the article through the journal Web site (http://nrcresearchpress.com/doi/suppl/10.1139/
z11-119).
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were quantified via blind scoring of previously typed individ-
uals.

Basic statistics
We considered all animals trapped in a patch to represent a

local population owing to the highly fragmented nature of the
study area, while the entire set of pooled samples were con-
sidered the global population. To determine if combining in-
dividuals from different years into a global population was
appropriate for subsequent analyses, we implemented an
analysis of molecular variance (AMOVA) in the program
ARLEQUIN version 2.0 (Schneider et al. 2000). In this hier-
archical analysis, we denoted all individuals from 2007 as
one population, while all individuals from 2008 represented
the second population, and partitioned genetic variation into
components at the intrapopulation and interpopulation levels.
Based on the AMOVA, we detected no evidence that genetic
variance was partitioned significantly between years (FST <
0.001, p = 0.708), and thus, we pooled both years for all
subsequent analyses.
We calculated allelic richness for the global population in

FSTAT (Goudet 1995; Goudet 2002), and observed and ex-
pected heterozygosities were calculated with the program
GDA (Lewis and Zaykin 2001). We calculated Weir and
Cockerham’s (1984) estimate of FIS for the global population
and within each local population, and tested for significant
deviations from Hardy–Weinberg equilibrium (HWE) at both
these scales using the randomization procedure (10 000 ran-
domizations) implemented in FSTAT. We controlled for type I
error with the false discovery rate (FDR) of Benjamini and
Yekutieli (2001). This method obtains an experiment-wide al-
pha level (aEW) based on the number of comparisons and
controls for dependency among tests (Benjamini and Yeku-
tieli 2001). The FDR is less conservative than the Bonferroni
correction and offers increased statistical power as the num-
ber of comparisons increases (Narum 2006).

Local genetic structure
We estimated Weir and Cockerham’s (1984) estimate of

FST (q) among all local populations and among all pairwise
combinations of local populations. To evaluate statistical sig-
nificance of FST values, we implemented a randomization
procedure in FSTAT. Specifically, we compared each ob-
served FST value to a null distribution of 1000 values calcu-
lated via randomization of genotypes among local
populations (Goudet et al. 1996). In a subsequent analysis,
we repeated the analyses of F statistics outlined above while
using only those local populations with n ≥ 10 individuals to
minimize bias owing to low sample size. Because of the high
number of pairwise comparisons, the type I error rate was
controlled using the FDR.

Social structure
To evaluate the presence of significant levels of social

structure within local populations of opossums, we calculated
Queller and Goodnight’s (1989) measure of relatedness (rxy)
with 95% bootstrapped confidence intervals. We evaluated
the significance of observed values of relatedness within lo-
cal populations via comparison to a null distribution of 10
000 rxy values based on randomization of individuals among
all local populations in GENALEX (Peakall and Smouse
2006). We used Queller and Goodnight’s (1989) estimator of
relatedness because it has been shown to exhibit a smaller
variance when relatedness between individuals is high (≥0.5)
than have other estimators, and thus, is more conservative in
regard to the identification of biologically significant relation-
ships (Csilléry et al. 2006).
We also examined the relationship between spatial distance

and relatedness values. To delineate biologically relevant dis-
tance classes, we consulted the literature for studies examin-
ing opossum home ranges that met the following criteria:
(i) opossum movement was monitored via radiotelemetry
and (ii) minimum convex polygon or kernel estimation was
used to calculate home-range sizes. After evaluating data

Table 1. The number genotyped (n), the number of alleles (A), allelic richness
(AR), expected heterozygosity (HE), observed heterozygosity (HO), estimated FIS

values, and associated p values for the FIS values (p) for 290 Virginia opossum
(Didelphis virginiana) samples from 28 habitat patches in northern Indiana.

Locus n A AR HE HO FIS p
OP03 289 8.00 8.00 0.59 0.56 0.048 0.086
OP08 290 7.00 6.99 0.73 0.72 0.018 0.316
OP14 290 14.00 13.99 0.88 0.90 –0.032 0.943
OP16 290 7.00 7.00 0.73 0.73 0.010 0.397
OP18 290 14.00 13.99 0.87 0.87 –0.005 0.606
OP19 290 11.00 11.00 0.84 0.84 0.000 0.527
OP36 290 16.00 16.00 0.90 0.91 –0.017 0.833
OP38 287 8.00 8.00 0.82 0.73 0.108 <0.001*
OP39 289 10.00 9.99 0.81 0.80 0.012 0.343
OP41 289 15.00 14.99 0.86 0.80 0.077 0.001*
OP42 290 10.00 9.99 0.81 0.78 0.034 0.128
OP46 290 9.00 8.99 0.75 0.73 0.020 0.276
OP48 289 8.00 7.99 0.81 0.81 –0.001 0.531
Mean 289.46 10.54 10.53 0.80 0.78 0.020 0.003*

Note: The p values are the result of a one-tailed test in the direction of heterozygote def-
icit and were evaluated with the false discovery rate (experiment-wide alpha (aEW) of
0.015). An asterisk denotes a significant value.
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from the three studies that met these criteria (Gillette 1980;
Allen et al. 1985; Gipson and Kamler 2001), we calculated
the mean estimate of home-range size over the three afore-
mentioned studies (67 ha) to estimate the linear dimension
of a opossum home range as 818.54 m. Based on a formula
in Bowman et al. (2002), where median natal dispersal dis-
tance is equal to 7 × (the linear dimension of home range),
we calculated the median dispersal distance of opossums to
be approximately 5.7 km. Thus, we utilized 6 km intervals
to delineate seven distance classes proceeding from the local
population level (interval 1) and extending out to 30 km,
with all individuals >30 km grouped into the final distance
interval. We then used spatial autocorrelation analysis as im-
plemented in the program SPAGeDi (Hardy and Vekemans
2002) to compare mean pairwise relatedness in local opos-
sum populations relative to mean pairwise relatedness within
our 6 km distance intervals.

Sex-biased dispersal
We evaluated the data for evidence of male-biased natal

dispersal within our study area using four approaches. First,

we calculated mean relatedness values and 95% bootstrapped
confidence intervals (rxy; Queller and Goodnight 1989)
within local populations separately for each sex using the
program GENALEX. In this analysis, the more philopatric
sex would exhibit significantly higher mean levels of related-
ness within local populations than the dispersing sex.
In our second analysis, we calculated the mean corrected

assignment index (mAIc) for each sex to determine the prob-
ability that an individual’s genotype may occur in each local
population given the allele frequencies in that population
(Goudet 2002). We expected females, as the more philopatric
sex (Ryser 1995), to have a higher probability of assignment
to the local population from which they were originally
sampled than males. To test for a significant difference in
the sex-specific mAIc values, we compared the observed dif-
ference between the two sexes to a null distribution of 10 000
values based on randomization of sex among individuals
within local populations in FSTAT. We also examined the
sex-specific variance in mAIc values (vAIc; Favre et al.
1997) as a third measure of sex-biased natal dispersal. In
this analysis, we expected the vAIc would be greater for the
dispersing sex (i.e., males) than the philopatric sex. To test
for significant differences in vAIc values between the sexes,
we compared the ratio of our observed vAIc values for males
and females to a null distribution of 10 000 values based on
randomization of sex among individuals within local popula-
tions in FSTAT. Finally, we calculated FST values within lo-
cal populations separately for both males and females. In this
analysis, the more philopatric sex would have a more hetero-
geneous allelic distribution, and thus, a larger FST than the
dispersing sex. To test for a significant difference between
the FST values for males and females, we compared the ob-
served difference between the values to a null distribution of
10 000 values based on randomization of sex while maintain-
ing genotypes within local populations in FSTAT.

Landscape-level genetic structure
We evaluated our data for patterns of genetic variation at

the landscape scale using the program STRUCTURE version
2.2 (Pritchard et al. 2000). STRUCTURE is used to evaluate
the probability of the observed data given a user-defined
number of clusters (i.e., populations), the parameter K. A
burnin of 50 000 followed by 100 000 iterations of the Mar-
kov chain Monte Carlo (MCMC) for K = 1 to K = 10 was
performed 10 times for each value of K. We utilized the pa-
rameter DK (Evanno et al. 2005) to indicate the most likely
number of populations within the data. The program GENE-
LAND (Guillot et al. 2005b) also implements a MCMC algo-
rithm to infer genetic structure, but additionally takes into
account the spatial location of each data point. Thus, we also
used GENELAND to infer the number of opossum popula-
tions in our data set. We performed 10 independent runs of
the MCMC algorithm in GENELAND, wherein the Dirichlet
model was used to simulate allele frequencies, the maximum
rate of the Poisson process was set to 290, and the maximum
number of nuclei was set to 870 based on the recommenda-
tions of Guillot et al. (2005a). For each independent run of
the program, we applied an uncertainty coordinate of 1 km
and 20 000 iterations of the MCMC (200 000 + thinning of
10) were used to infer the number of populations. We initially
included all 28 local populations for both the STRUCTURE

Table 2. The total number of individuals
sampled (n), estimates of FIS, and the Queller
and Goodnight (1989) relatedness estimates
for each local population (rxy) in a sample of
290 Virginia opossums (Didelphis virginiana)
from northern Indiana.

Local
population n FIS rxy
1 4 0.090 0.031
3 3 –0.015 –0.077
6 14 –0.016 –0.006
7 15 0.061 0.005
8 20 0.030 0.001
9 15 –0.017 –0.003
10 13 –0.007 0.036
11 14 0.013 0.017
12a 5 0.042 0.043
12b 5 –0.014 –0.009
13 8 –0.008 0.000
17 6 0.054 –0.047
18 9 0.083 –0.028
19 10 0.020 0.010
20 9 0.070 0.002
21 6 –0.080 0.047
22 6 0.035 –0.011
23 13 0.024 –0.013
24 9 0.013 0.002
25 13 –0.057 0.056*
27 5 –0.028 –0.060
29 13 –0.031 0.060*
30 8 0.043 0.025
31 8 0.086 –0.040
32 13 –0.012 0.014
33 20 0.047 0.002
34 7 –0.001 0.001
35 19 0.019 –0.007

Note: The false discovery rate was used to evalu-
ate rxy estimates and an asterisk indicates a signifi-
cant value (experiment-wide alpha (aEW) of 0.015).
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and the GENELAND analyses, but repeated the procedures
with only local populations with n ≥ 10 individuals to mini-
mize bias owing to low sample size within local populations.
Finally, we evaluated our data set for evidence of isolation

by distance (IBD), which is expected to produce a pattern in
which geographically close individuals are more similar ge-
netically than geographically distant individuals. We per-
formed a Mantel test (Mantel 1967) in the program
ALLELES IN SPACE (Miller 2005) to test for IBD and eval-
uated significance of the observed data using 10 000 permu-
tations of the data. Our Mantel test used pairwise matrices to
evaluate correlations between geographic (Euclidean dis-
tance; m) and genetic (Dij; Nei et al. 1983; Miller 2005) dis-
tances among local populations.

Results

Basic statistics
We observed high levels of genetic diversity in the sample

of 290 Virginia opossums collected over a 2-year period
from northern Indiana with a mean of 10.54 alleles/locus,
and overall mean expected and observed heterozygosities of
0.80 and 0.78, respectively (Table 1). Missing genotypes ac-
counted for 0.11% of the data and error rates were <1.0%.
However, locus OP38 contained the highest rate of missing
data (0.69%) among all loci, indicating the possible presence
of null alleles, albeit at small frequencies. Estimates of FIS
for the global population revealed that 2 of the 13 loci uti-
lized in this study exhibited a significant deficit of hetero-
zygotes after correction for multiple comparisons (Table 1).
No local populations deviated significantly from Hardy–
Weinberg expectations after correction for multiple compari-
sons (Table 2).

Local genetic structure
Overall, we observed low but significant levels of popula-

tion differentiation (FST = 0.005, p < 0.001) among local
populations of opossums. An analysis that excluded locus
OP38 revealed a similar pattern (FST = 0.004; 95% CI:
–0.001 to 0.010); thus all subsequent analyses included this
locus. Pairwise comparisons of FST values among all local
populations revealed a high variance in the extent of genetic
differentiation exhibited among local population pairs
(–0.036 ≤ FST ≤ 0.054). Approximately 5% of pairwise com-
parisons (19 of 378) were significant, largely attributed to lo-
cal population 29 which exhibited evidence of significant
genetic differentiation from 14 other local populations (sup-
plementary Table S1).1
Our analyses including only local populations with n ≥ 10

individuals (13 of 28) revealed slightly more evidence of ge-
netic variance partitioning (FST = 0.007, p < 0.001; 95% CI:
0.002 to 0.012) than the analysis that included all local pop-
ulations. Pairwise comparisons of FST values among these 13
local populations varied widely (–0.005 ≤ FST ≤ 0.031), and
approximately 15% of pairwise comparisons of local patches
(12 of 78) exhibited evidence of significant genetic differen-
tiation. Again, pairwise variation among local populations
was largely attributed to local population 29, which exhibited
evidence of significant genetic differentiation from 10 other
local populations (supplementary Table S2).1

Social structure
We observed highly variable estimates of mean relatedness

within local populations (range of –0.077 ≤ rxy ≤ 0.060;
mean = 0.002) and approximately 7% of local populations
(2 of 28) exhibited higher levels of relatedness than expected
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Fig. 1. Spatial autocorrelation analysis in a sample of 290 Virginia opossums (Didelphis virginiana) from a fragmented agricultural ecosystem
in northern Indiana. Distance class 1 corresponds to within patch relatedness, while distance class 2 corresponds to relatedness among pairs of
individuals that are between 1 and 6 km apart.
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by chance (Table 2). Our spatial autocorrelation analysis re-
vealed that levels of relatedness were significantly higher
than expected within local populations (distance interval 1:
rxy = 0.006, p = 0.001), but not at any of the other distance
intervals examined (1–6, 6–12, 12–18, 18–24, 24–30,
>30 km; Fig. 1).

Sex-biased dispersal
We failed to detect any evidence of sex-biased natal disper-

sal using any of the four approaches that we undertook. First,
while we observed slightly higher levels of mean relatedness
among males within local populations than among females
(Table 3), the numbers of patches that exhibited significantly
higher levels of relatedness based on panmictic expectations
did not differ between the sexes. Second, although the mean
level of assignment (mAIc) was larger for females (mAIc =
0.04) than males (mAIc = –0.05), the difference between

these two values was not significantly different from random
expectations. Third, the ratio of our sex-specific estimates of
vAIc (males vAIc = 6.43; females vAIc = 7.30) was also not
significantly different from random expectations. Finally, the
difference in FST values for females (0.010) and males
(0.009) was also not significantly different from random ex-
pectations. Thus, based on the four separate approaches, we
found no evidence for sex-biased dispersal within our data
set.

Landscape-level genetic structure
The results of all of the STRUCTURE and GENELAND

analyses failed to reveal any evidence of significant genetic
partitioning across the study area. For STRUCTURE, the
highest mean estimate of the likelihood of the data occurred
at K = 1 (i.e., all individuals considered to be sampled from
a single panmictic population) and we did not observe a
sharp increase in DK at any higher values of K. For GENE-
LAND, all 10 independent runs used to infer the number of
populations indicated that K = 1. Likewise, no evidence of
isolation by distance was detected across our study landscape
(r = 0.02, p = 0.07).

Discussion
In this research, we observed a significant but low level of

population genetic structure (FST = 0.005) for opossums in-
habiting a highly fragmented, agricultural ecosystem. Genetic
differentiation among local population pairs was highly varia-
ble and mean relatedness within local opossum populations
rarely exceeded random expectations. Our results are in sharp
contrast to those for raccoons inhabiting this same landscape,
which exhibit significant levels of genetic differentiation
among local populations and a high degree of genetic relat-
edness within many local populations, possibly attributed to
high levels of site fidelity (Dharmarajan et al. 2009). Indeed,
mean relatedness values within local raccoon populations
were significantly greater than random expectations in 52%
of local populations of raccoons (Dharmarajan et al. 2009),
compared with 7% observed for local populations of Virginia
opossums in this study. These data suggest that these two
highly abundant, generalist mesopredators exhibit dramati-
cally different ecological and behavioral attributes to thrive
within the same landscape.
Another significant finding of this study was the lack of

support for the occurrence of sex-biased natal dispersal in
the opossum, despite a number of previous accounts indicat-
ing that this species exhibits male-biased natal dispersal
(Fitch and Sandidge 1953; Holmes and Sanderson 1965;
Wright 1989; Ryser 1995). Although natal dispersal serves
various functions, it is thought to have evolved to reduce
competition among kin and conspecifics, avoid inbreeding,
and cope with habitat and environmental variability (Bowler
and Benton 2005). For example, spatial variation in patch
quality, population density, demographic structure, and re-
source availability all have been shown to influence individ-
ual and population-level dispersal patterns (Ims and
Hjermann 2001; Wiens 2001). Previous studies documenting
male-biased natal dispersal in Virginia opossums have eval-
uated relatively small study areas (≤3700 ha) characterized
by large tracts of contiguous forest (≥238 ha) with limited

Table 3. The sample size (n) and the Queller and
Goodnight (1989) mean estimate of relatedness for
both males and females in each local Virginia opos-
sum (Didelphis virginiana) population in northern
Indiana.

Females Males

Local
population n rxy n rxy
1 2 — 2 —
3 2 — 1 —
6 10 –0.005 4 –0.016
7 7 0.000 8 0.023
8 14 –0.008 6 –0.027
9 3 0.046 12 0.000
10 6 0.095 7 0.037
11 12 –0.001 2 —
12a 2 — 3 0.196*
12b 3 0.020 2 —
13 4 0.026 4 0.072
17 5 –0.004 1 —
18 3 0.016 6 –0.051
19 7 0.003 3 0.045
20 1 — 8 –0.031
21 3 0.078 3 0.067
22 3 –0.013 3 0.072
23 6 –0.004 7 0.024
24 6 –0.057 3 0.179*
25 6 0.043* 7 0.039
27 3 0.009 2 —
29 7 0.100* 6 0.045
30 2 — 6 0.030
31 4 0.011 4 0.007
32 7 0.020 6 –0.006
33 10 0.024 10 –0.020
34 5 –0.005 2 —
35 9 0.012 10 –0.015
Mean 0.018 0.032

Note: Mean relatedness estimates were only calculated
if n ≥ 3 individuals. The false discovery rate was used to
evaluate p values, and an asterisk indicates a significant
value. For the male analysis, the experiment-wide alpha
(aEW) was 0.014. For the analysis that included only fe-
males, the aEW was 0.013.
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agricultural land use (Fitch and Sandidge 1953; Holmes and
Sanderson 1965; Wright 1989; Ryser 1995). Alternatively,
the expansive (1165 km2), highly fragmented agricultural
ecosystem in which our research was conducted is character-
ized by a high degree of complexity, with discrete forest
patches embedded in a large agricultural matrix. The spatial
and temporal variation in the distribution of resources in agri-
culturally fragmented landscapes likely favors natal dispersal
of both sexes (Bowler and Benton 2005). However, dispersal
of both sexes might also be favored to reduce local resource
competition among closely related individuals, but this mech-
anism requires the direct identification of kin unless a fixed
strategy within the species had evolved (Bowler and Benton
2005). Indeed, previous research indicates that young Vir-
ginia opossums can discriminate between mothers and unre-
lated females, but it is unknown how this would translate to
interactions among independent adults (Holmes 1992). Fur-
thermore, results from our research, combined with the re-
sults from the previously discussed studies, indicate the
Virginia opossum has not evolved a fixed dispersal strategy
across its range. Nevertheless, molecular approaches should
be employed in ecosystems with limited agricultural land use
to more closely examine patterns of sex-biased dispersal in
this species.
Our analysis of landscape-level genetic structure in opos-

sums did not detect any evidence of significant population
structure at this spatial scale (K = 1). Also, analyses did not
reveal any significant barriers to gene flow despite the pres-
ence of three rivers and two large reservoirs within the study
area. Although rivers have been shown to be significant bar-
riers to dispersal in both European badgers (Meles meles
(L., 1758)) and raccoons (Cullingham et al. 2009; Frantz et
al. 2010), Virginia opossums are effective swimmers (Mc-
Manus 1974) and are known to readily use anthropogenic
features (e.g., bridges) to traverse both rivers and reservoirs.
In addition, the unique taxonomic and natural history charac-
teristics of the Virginia opossum likely contribute to the ab-
sence of genetic structure at the landscape scale. For
example, female Virginia opossums carry young in the
pouch, enabling individuals to move more freely throughout
the landscape than competing placental mammals (Hossler et
al. 1994). Additionally, the total amount of parental care dif-
fers between the Virginia opossum and its primary competitor,
the raccoon. The Virginia opossum invests approximately
120 days of parental care (Gardner and Sunquist 2003)
compared with 189 days of parental investment typical of
raccoons (Gehrt 2003; Schneider et al. 1971).
Generalist mesopredators are often cited as being insensi-

tive to habitat fragmentation with respect to abundance owing
to their mobility, flexible diet, and ability to use a diverse ar-
ray of habitats (Crooks 2002; Saunders et al. 1991). Further-
more, while the apparent success of mesopredators in
fragmented ecosystems often has been attributed to their abil-
ity to adapt to complex spatial and temporal distributions of
both anthropogenic and natural resources, limited empirical
data exist pertaining to fine-scale social and population struc-
ture in the context of these behavioral adaptations. In this re-
search, we demonstrated that Virginia opossums in
fragmented, agricultural ecosystem display little evidence of
genetic structure at both the local and landscape scales. The
lack of any genetic structure in this species in an agricultur-

ally fragmented system may be attributed to its flexible diet,
reduced amount of parental care, and the dispersal capabil-
ities of both sexes.
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